
Design and Development of Multidevice User
Interfaces through Multiple Logical Descriptions

Giulio Mori, Fabio Paternò, and Carmen Santoro

Abstract—The increasing availability of new types of interaction platforms raises a number of issues for designers and developers.

There is a need for new methods and tools to support development of nomadic applications, which can be accessed through a variety

of devices. This paper presents a solution, based on the use of three levels of abstractions, that allows designers to focus on the

relevant logical aspects and avoid dealing with a plethora of low-level details. We have defined a number of transformations able to

obtain user interfaces from such abstractions, taking into account the available platforms and their interaction modalities while

preserving usability. The transformations are supported by an authoring tool, TERESA, which provides designers and developers with

various levels of automatic support and several possibilities for tailoring such transformations to their needs.

Index Terms—Design tools and techniques, user interfaces, heterogeneous clients, multiplatform user interfaces, authoring

environments, abstract user interfaces, user interface design, task models.

�

1 INTRODUCTION

RECENT years have seen the ever-increasing introduction
of new types of interactive devices (devices that

support interaction with users). A wide variety of new
interactive platforms is offered on the mass market. By
platform, we mean a class of systems that share the same
characteristics in terms of interaction resources. Examples
of platforms are the graphical desktop, PDAs, mobile
phones, and vocal systems. Their range varies from small
devices such as interactive watches to very large flat
displays.

The availability of such platforms has forced designers to
strive to make applications run on a wide spectrum of
computing devices in order to enable users to seamlessly
access information and services regardless of the device
they are using and even when the system or the environ-
ment changes dynamically. On the one hand, this resulted
in a dramatic improvement for the activities of users; on the
other hand, it has radically changed the nature of many
interactive applications, converting them to nomadic
applications, namely, applications supporting user access
in various contexts through different interactive devices. In
fact, in order to guarantee a high level of user satisfaction, it
is necessary that the applications should be able to adapt
their user interfaces to the different context of uses, in
particular, to the different devices used to access their
functionality. This raises the fundamental issue of how to
assist software designers and developers in building such
applications, with the consequent need for novel methods
and tools for the development of interactive software
systems able to adapt to different targets while preserving

usability. Calvary et al. have used the term plasticity to
indicate this type of user interface [7]: Our TERESA tool is a
concrete solution to achieve such requirement.

In current practice, the design and development of
multiplatform interfaces is often obtained through the
development of several versions of the same application
(one for each platform considered) that can at most
exchange data. This solution, with no tool support to
address multiplatform issues, is rather limited because it
implies high implementation and maintenance costs. The
opposite solution, completely automatic, is to use transcod-
ing where an application written in a language for a
platform is automatically transformed into an application in
a language for another platform (see [11] for an example of
HTML-to-WML transcoding). Strengths and weaknesses of
different transcoding approaches (direct, hybrid, etc.) have
been evaluated in [12], which provides useful hints to select
the “best” technique depending on the current configura-
tion. However, such an evaluation does not solve the
traditional problem of such approaches which assume that
the same tasks are supported by each platform and tend to
support them in the same manner without taking into
account the specific features of the platform at hand, so
providing poor results in terms of usability.

Another solution proposed is the use of style sheets.
Each platform is associated with a different set of style
sheets. Thus, the same elements are presented differently
according to the type of platform available. This could be
useful, although it is still not capable of covering the wide
range of possibilities that might occur when relationships
between tasks and platforms (supporting tasks’ perfor-
mance) are considered. Indeed, style sheets can help only
try to better support the same tasks through different
platforms, but unfortunately this is not always adequate
because users often want to carry out different tasks
according to the various types of platform. In addition,
even mutual relations among tasks performed through
several platforms may exist.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004 1

. The authors are with Institute of Science and Information Technology,
National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy.
E-mail: {giulio.mori, fabio.paterno, carmen.santoro}@isti.cnr.it.

Manuscript received 29 Aug. 2003; revised 19 Feb. 2004; accepted 13 May
2004.
Recommended for acceptance by A. Mili.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0125-0803.

0098-5589/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

A more comprehensive solution can be obtained through
the use of model-based approaches, which aim to support
development through the use of meaningful abstractions to
avoid dealing with low-level details. In the context of
multidevice interface design and development, different
abstraction levels can capture relevant information without
having to address the plethora of details related to each
device. This allows a tool to generate the specific version
adapted for each device and modality, thus representing a
viable alternative to overcome the limitations of other
approaches.

In the next section of the paper, we describe the basic
concepts characterising our approach and discuss related
work. Then, in Section 3, we introduce our method. Section 4
is dedicated to describing how we have modified a
previously developed tool for task modeling in order to
support this new approach. The following section is
devoted to describing the method and the tool (TERESA)
that has been designed and implemented to support it (we
discuss its requirements and the XML languages describing
the various levels of abstraction considered). The transfor-
mations supported by the tool are described in more detail
in Sections 6 and 7. After that, we report on experiences of
use and lessons learned (Section 8); some concluding
remarks along with indications for future work are
provided in Section 9.

2 DESIGN OF MULTIPLATFORM APPLICATIONS

2.1 Basic Concepts

Our approach can be summarized in four words: One
Model, Many Interfaces [22]. This means that we start with an
abstract description of the activities to support and we are
able to obtain different user interfaces for each available
platform. In particular, we start with a task model of a
nomadic application, which describes the activities that
should be supported in order to reach the user’s goals
through different devices. Then, we allow designers to
obtain effective user interfaces for the various platforms
considered through a number of transformations imple-
mented by our tool TERESA (Transformation Environment
for inteRactivE Systems representAtions).

In order to address the issues highlighted in the previous
section, it is important to consider the various levels
involved in an interactive system:

. Task and object model. At this level, the logical
activities that need to be performed in order to
reach the users’ goals are considered along with the
objects that have to be manipulated for their
performance. Often tasks are represented hierarchi-
cally along with indications of the temporal relations
among them and their associated attributes.

. Abstract user interface. In this case, the focus shifts to
the interaction objects supporting task performance.
An abstract user interface is defined in terms of a
number of abstract presentations, each of them
identifying the set of user interface elements
perceivable at the same time. Each abstract pre-
sentation is composed of a number of interactors [21],
which are abstract interaction objects identified in

terms of their semantics (the basic task they
support).

. Concrete user interface. At this point, each interactor is
replaced with a concrete interaction object that
depends on the type of platform and media available
and has a number of attributes that define more
concretely its appearance and behavior.

. Final User interface. At this level, the concrete
interface is translated into an interface defined by a
specific software language (e.g., XHTML, Java, etc.).

To better understand such levels, we can consider an
example of task: making a flight reservation. This task can
be decomposed into selecting departure and arrival towns

and, optionally, selecting seat and meal preferences. At the
abstract user interface level, we need to identify the
interaction objects necessary to support such tasks: for
example, specifying departure and arrival towns calls for

interactive selection objects. When we move on to the
concrete user interface, we need to consider the specific
interaction elements supported by the platform. So, in a
desktop interface, the selection can be supported by a list

object. This choice is more effective than a check-box
because the list supports a single selection from a poten-
tially long list of elements whereas the check-box is suitable
to support multiple choices from a limited number of

possibilities. The user interface of the example is the result
of these choices and others involving attributes such as the
font type/size, the foreground/background colors, and
decoration images, and will be implemented in a specific

language.
An early version of our approach and tool was already

introduced in [14]. In this paper, we are able to present a
novel engineered solution supported by a number of
XML-based representations and transformations with

various levels of automation. We also present the new
associated tool.

2.2 Tasks and Multiplatform Environments

In order to identify the possible design solutions when

multiple platforms are considered, we have developed a
taxonomy of the relations between tasks and platforms. This
is based on the observation that it is neither possible nor
desirable to do everything through every platform. Each

platform should be associated with specific contexts and
should be effectively used only when they occur.

More precisely, in our taxonomy we identify various
cases:

. Same task on multiple platforms in the same manner. For
example, entering login and password is performed
similarly in various platforms.

. Tasks meaningful only on a single platform type. For
example, it is possible to use a desktop system to
browse video trailers or access large attachments of
email messages but these activities are not possible
with small mobile phones. Conversely, the mobile
phone can enable tasks that depend on the current
position of mobile users (such as find an alternative
route in case the current road is blocked), which are
not meaningful for a desktop system.

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

. Dependencies among tasks performed on different plat-
forms. This occurs when the performance of a task
through a platform enables or disables the perfor-
mance of tasks through another platform. For
example, during a city tour users can select a
number of works of art. This, in turn, can enable
the access to more detailed information regarding
them through the desktop system.

. Same task on multiple platforms but performed in
different manner:

- With different domain objects. According to the
resources available in a platform, different levels
of detail can be provided regarding an argu-
ment. This means that some domain objects can
be considered only if, for example, there is
enough screen space available.

- With different user interface objects. The same task
can be supported through different interaction
objects according to the media and the resources
available. Fig. 1 shows how the select museum
section task can be performed differently: using a
graphical selection through a map in a desktop
system (left part of the figure) and using a list of
names in a mobile phone where a small screen is
available (right part).

- With different task decomposition. It occurs when
the structure of a task needs to be changed. For
example, if users want to reserve a flight seat,
some systems will allow them to specify only
the basic parameters (day, departure, and
arrival towns), while others might allow for
specifying a number of other (optional) para-
meters, such as preferred departure and arrival
time, food preferences, and so on.

- With different temporal relations among subtasks. In
particular, the type of platform considered can
impose specific constraints that do not occur in a
more powerful system. So, for example, the
small screen of a phone interface may require
distributing among different sequential presen-
tations some interaction techniques that in a
desktop system can be included in a single

presentation and performed in any order. An-
other example is the vocal interface that seri-
alises interactions that can occur concurrently in
a graphical interface.

2.3 Related Work

The most common model-based approach in software
engineering, UML [5], has paid very little attention to
supporting the design of the interactive component of a
software artefact. Specific model-based approaches have
been developed to support user interface designers. The
first generation of work in this area mainly focused on how
to use models to only support development of desktop
interactive applications, examples are Mobi-D [24] and
Mastermind [27] or how to use such models to support user
interaction at runtime, still in desktop applications [26]. As
Myers et al. [16] pointed out, the increasing availability of
new interaction platforms has raised a new interest in this
approach in order to allow developers to define the input
and output needs of their applications, vendors to describe
the input and output capabilities of their devices, and users
to specify their preferences. Then, a model-based system
can choose appropriate interaction techniques taking into
account all of these aspects. Even recent W3C standards,
such as XForms [28], have introduced the use of abstrac-
tions to address new heterogeneous environments. In
particular, XForms aims to separate presentation from
content through the definition of a set of platform-
independent, general-purpose, and focussing on the goal
(or intent) behind each form control. In fact, the list of
XForms control includes objects like select (choice of one or
more items from a list), trigger (activating a defined
process), output (display-only of form data), secret (entry
of sensitive information), etc., rather than refer to concrete
examples like radio buttons, checkboxes, and so forth,
which are hard-wired to specific representations of such
controls. This kind of logical description locates the types of
abstractions supported by XForms at the abstract user
interface level. However, the task level is not explicitly
addressed. Once XForms is actually supported by the major
browsers we plan to extend our environment in order to
generate code in this mark-up language as well.

The new challenges have raised the need to define
XML-based languages for representing the relevant concepts
and ease their automatic manipulation. An example of a
language that has addressed these issue is the User Interface
Markup Language (UIML) (http://www.uiml.org/) [1], an
XML-compliant language that supports a declarative de-
scription of a user interface in a device-independent manner.
This has been developed mainly by Harmonia. However,
their tools do not support the task level. Some research work
on how to integrate task models with UIML has recently
started at Virginia Tech [2], but its results are still
preliminary and have not been incorporated in the Liquid
environment supporting UIML. The eXtensible Interface
Markup Language (XIML) (http://www.ximl.org/) [25] is
an extensible XML-based specification language for multiple
facets of multiple models in a model-based approach. This
has been developed by a forum headed by RedWhale
software. A simple notion of task models is supported by this
approach, for which tool support is not currently available.

MORI ET AL.: DESIGN AND DEVELOPMENT OF MULTIDEVICE USER INTERFACES THROUGH MULTIPLE LOGICAL DESCRIPTIONS 3

Fig. 1. Example of different interfaces supporting the same task through

different platforms.

While these approaches have shown some interesting
results, there is still a lack of general solutions able to
support the various relevant abstraction levels.

PUC (Personal Universal Controller) [17] is an environ-
ment that supports the downloading of logical descriptions
of appliances and the automatic generation of the corre-
sponding user interfaces. The logical description is per-
formed through templates associated with design
conventions, which are typical design solutions for do-
main-specific applications. The application area of this
approach is oriented to the home domain and task models
are not considered. Aura [9] is a project whose goal is to
provide an infrastructure that configures itself automati-
cally for the mobile user. When a user moves to a different
platform, Aura attempts to reconfigure the computing
infrastructure so that the user can continue working on
tasks started elsewhere. In this approach, tasks are
considered as a cohesive collection of applications. Suppli-
ers provide the abstract services, which are implemented by
just wrapping existing applications and services to conform
to Aura APIs. For instance, Emacs, Word, and NotePad can
each be wrapped to become a supplier of text editing
services. So, the different context is supported through a
different application for the same goal (for example, text
editing can be supported through MS Word or Emacs
depending on the resources of the device at hand). Other
systems that have addressed cross-platform UI generation
but that neither support task-level descriptions nor provide
authoring environments are ICRAFT [23] and XWeb [18].

Another type of approach is the use of reverse engineer-
ing techniques to obtain an abstract description of an
existing interactive system for a given platform and then
use it as a starting point for a new design adapted for a new
platform. Examples of such reverse engineering approaches
are Vaquita [6] and WebRevEnge [19]: They both start with
a desktop Web site code, the former allows designers to

obtain an abstract user interface whereas the latter is able to
derive the correspondent task model. Both of them can be
used as complementary support for our approach: Once an
abstract description has been obtained, our tool can help the
developer to obtain a new design suitable for a different
type of platform.

3 THE METHOD

In this section, we introduce our method for model-based
design of multiplatform user interfaces. It is composed of a
number of steps that allows designers to start with an
envisioned overall task model of a nomadic application and
then derive concrete and effective user interfaces for
multiple devices. In Fig. 2, the different data managed at
each level have been specified within rectangles, whereas
the various steps performed among such levels have been
referred through numbers. The next sections describe in
detail each step.

We start with High-level task modeling of a multiplatform

application. In this phase, designers develop a single model,
which addresses the possible contexts of use and the
various platforms involved, including a domain model
aiming to identify all the objects that have to be manipu-
lated to perform tasks and the relations among such objects.
The purpose of this model is to provide an overview of the
tasks supported by the nomadic application. For each task,
it is possible to indicate what platforms are able to support
it and it is also possible to show dependencies among tasks
that can be performed through different platforms.

The next phase (see Step 1 in Fig. 2) is developing the
system task model for the different platforms considered. Here,
designers have to filter the nomadic task model according
to the target platform and, if necessary, further refine the
resulting task model depending on the specific platform
considered, thus obtaining the various platform-dependent

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

Fig. 2. The One Model, Many Interfaces approach.

task models, which represent the input of the next step.
Then, designers have to move from the system task model to
the abstract user interface (see Step 2 in Fig. 2). The goal of this
phase is to obtain an abstract description of the user
interface composed of a set of abstract presentations that are
identified through an analysis of the task relations. Each
presentation will be specified by means of abstract interac-
tion objects composed through various operators (grouping,
ordering, hierarchy, relation), which stand for different
composition techniques (for example, the grouping opera-
tor will highlight the fact that there are objects that should
be grouped together because they are closely related to each
other). The next step (transformation (3) in Fig. 2) is from
abstract to concrete interfaces. This phase is completely
platform-dependent and has to consider the specific
properties of the target platform. Then, every interactor is
mapped into interaction techniques supported by the
particular target platform, and the abstract composition
operators also have to be appropriately associated with
techniques highlighting their logical meaning: A typical
example is the set of techniques for conveying grouping
relations in desktop visual interfaces by using presentation
patterns such as proximity, similarity, and color.

The last phase (Step 4 in Fig. 2) is Code generation, where
the code is generated starting with the concrete interface
description in the target software environment. This can be
done completely automatically because all the design
choices have already been made. In case there is a need
for implementations in different languages for the same
platform only this transformation needs to be changed.

At any time, it is possible to go back in this sequence of
transformations in order to revise the previously considered
models in case new issues have been identified after
performing a transformation.

In order to provide tool support for this method, we have
defined XML languages for the task model, the abstract

level, and the concrete level; we extended a tool for task
modeling we already implemented; and we have developed

from scratch the TERESA tool for authoring multiplatform
applications. Both tools will be described in the next

sections.

4 TASK MODELS OF NOMADIC APPLICATIONS

The ConcurTaskTrees Environment (CTTE) [13] is an

engineered, publicly available (http://goive.isti.cnr.it/

ctte.html) tool for task modeling. It eases the development

of task models described using the ConcurTaskTrees (CTT)

notation [20] and supports their analysis through a number

of features (metrics evaluation, interactive simulation, etc.).

The ConcurTaskTrees notation supports a hierarchical

description of task models with the possibility of specifying

a number of temporal relations among them (such as

enabling, disabling, concurrency, order independence, and

suspend-resume). In addition, for each task, it is possible

to specify what objects need to be manipulated for its

accomplishment (it is possible to consider both user

interface and domain objects), as well as a number of

additional attributes (such as frequency) (see Fig. 3).
In order to be able to capture the specific aspects of task

models for nomadic applications, we needed to extend
CTTE in the following way:

. The platform attribute has been added in each task

specification; its purpose is to indicate the types of

platforms that are suitable to support a task. It is
worth noting that at this level—the task level—sets

of devices sharing certain similarities are considered,

rather than specific devices. So, in our framework, we

provide for typical sample device clusters as mobile

phones and PDAs are, together with the possibility

MORI ET AL.: DESIGN AND DEVELOPMENT OF MULTIDEVICE USER INTERFACES THROUGH MULTIPLE LOGICAL DESCRIPTIONS 5

Fig. 3. Class diagram representing the concepts of the ConcurTaskTrees notation for task models.

for designers to define their own platforms. This has
proven to be both feasible and flexible to tackle the

problem of dealing with the disparate devices that

our approach has to consider. Nevertheless, addi-

tional levels of refinement within the same cluster

are considered in the last phase of the method, when

knowing the specific characteristics of the devices

considered becomes useful for producing effective

final user interfaces.
. The platform attribute has also been associated with

the objects manipulated during task accomplish-
ment. Indeed, CTT allows designers to specify for

each task what objects should be manipulated

during its performance.
. The filtering functionality according to the platform

attribute has been added. This means that it is

possible to take a task model of a nomadic

application and ask to view only the parts that can

be actually supported by a given platform. If the task

model has not been carefully designed, this can
generate a model with some unconnected parts.

However, the tool can help in refining it. The filter-

and-refine mechanism allows designers to maintain

a global picture of the application and derive the

corresponding model for each platform.

5 TERESA

5.1 Approach

A number of main requirements have driven the design and

development of TERESA:

. Mixed initiative. We want a tool able to support
different levels of automation ranging from comple-
tely automatic solutions to highly interactive solu-
tions where designers can tailor or even radically
change the solutions proposed by the tool. This is
important to obtain a tool able to satisfy a variety of
needs: situations when the time available is short,
the application domain is rather narrow, or the
designer has no expertise call for completely auto-
matic solutions. When designers are expert or the
application domain is either broad or has specific
aspects, then more interactive environments are
useful because they allow the designer to directly
make important design decisions.

. Model-based. As Myers et al. pointed out [16], the

variety of platforms increasingly available can be

better handled through some abstractions that allow

designers to have a logical view of the activities to

support.
. Multiple logical levels described through XML-based

languages. XML-based languages ease the possibility

of importing and exporting user interface descrip-
tions through different tools and environments, they

can be used to describe each relevant logical

description.
. Top-down. This approach is an example of forward

engineering. Various abstraction levels are consid-

ered, and we support cases when designers have to

start from scratch. So, they first have to create more
logical descriptions and then move on to more

concrete representations until they reach the final

system. We are aware that in other cases bottom-up

approaches may be preferable, for example, when

designers aim to redesign a desktop Web site for a

mobile device. To this end, we already had

experiences of integrating our tool with a reverse

engineering tool (Vaquita) that built the concrete
description of an existing application that was

redesigned for a mobile phone through TERESA.
. Different entry-points. Our approach aims to be

comprehensive and to support the various possibi-

lities indicated by our task/platform taxonomy,

although it may happen that only a part of it needs

to be actually supported (for example, when only

different brands of mobile phone are considered). In

this case, there is no need for a nomadic task model,

given that only one type of platform is involved and
designers can start with either the corresponding

system task model or the corresponding abstract

user interface.
. Web-oriented. The Web is everywhere and, so, we

decided that Web applications should be our first

target. However, the approach is also valid for

generating user interfaces for other types of software

environments, such as Java applications, Microsoft

environments, etc. This simply requires extending
the implementation of the last transformation (from

the concrete to the final user interface) for the

specific target software.

5.2 Main Functionality

TERESA is a transformation-based tool that supports the

design of an interactive application at different abstraction

levels and generates the concrete user interface for various

types of platforms. The main transformations supported in

TERESA are:

. Presentation task sets and transitions generation. From
the XML specification of a CTT task model concern-
ing a specific platform, it is possible to obtain the
Presentation Task Sets (PTSs), sets of tasks which are
enabled over the same period of time according to
the constraints indicated in the model and transitions
specifying the conditions allowing for moving across
PTSs. Such sets, depending on the designer’s
application of a number of heuristics (general criteria
used to merge together two or more PTSs) supported
by the tool, can be grouped together so identifying
the groups of tasks that should be supported by each
user interface presentation.

. From task model-related information to abstract user
interface. The goal of this phase is mapping the task-
based specification of the system onto an interactor-
based description of the related abstract user inter-
face. Both the XML task model and Presentation
Task Sets specifications are the input for the
transformation generating the associated abstract
user interface. The specification of the abstract user

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

interface, in terms of both its static structure (the
“presentation” part) and dynamic behavior (the
“dialogue” part), is saved for further analyses and
transformations. It is worth pointing out that by
using TERESA it is also possible to access the inverse
mapping since for each interactor the tool is able to
automatically identify and highlight the related task,
so that designers can immediately spot such a
relation. This is particularly useful especially when
it comes to specifying the properties of each
interactor, as the knowledge of the task it supports
is an important indication of its meaning and goal,
so it helps designers to position the interactor within
the overall application and decide on the most
appropriate settings.

. From abstract user interface to concrete interface for the
specific platform. This transformation starts with the
loading of an abstract user interface previously
saved and yields the related concrete user interface
for the specific media and interaction platform
selected. A number of parameters related to the
customisation of the concrete user interface are made
available to the designer.

. Automatic UI Generation. The tool automatically

generates the final UI for the target platform. The

starting point can be either the single-platform task

model, using a number of default configuration

settings related to the user interface generation, or

the abstract or the concrete user interface.

5.3 TERESA Abstract User Interface Language

An abstract user interface is composed of a number of
presentations and connections among them. Each presenta-
tion defines a set of presentations and interaction techni-
ques perceivable by the user at a given time. The
connections define the dynamic behavior of the user
interface. More precisely, they indicate what interactions
trigger a change of presentation and what the next
presentation is. They can be associated with complex
conditions in case a specific combination of interactions
should trigger the change of presentation.

The structure of the presentation is defined in terms of
interactors (abstract descriptions of interaction objects
classified depending on their semantics) [21] and their
composition operators (see Fig. 4). It is possible to
distinguish between interactors supporting user interaction
(interaction elements) and those that present results of
application processing (only_output elements). The inter-
action elements imply an interaction between the user and
the application. There are different types of interaction
elements depending on the type of task supported. We have
selection elements (to select between a set of elements), edit
(to edit an object), and control (to trigger an event within the
user interface, which can be useful to activate either a

MORI ET AL.: DESIGN AND DEVELOPMENT OF MULTIDEVICE USER INTERFACES THROUGH MULTIPLE LOGICAL DESCRIPTIONS 7

Fig. 4. The concepts and their relations represented in the TERESA notation for abstract user interfaces.

functionality or the transition to a new presentation).
Differently, an only_output element defines an interactor
that implies an action only from the application. There are
different types of only_output elements (text, object,
description, feedback) depending on the type of output
the application provides to the user: a textual one, an object,
a description, or a feedback about a particular state of the
user interface.

The composition operators can involve one or two
expressions, each of them can be an interactor or a
composition of several ones. In particular, the composition
operators have been defined taking into account the type of
communication effects that designers aim to achieve when
they create a presentation [15]. They are:

. Grouping (G) indicates a set of interface elements
logically connected to each other.

. Relation (R) highlights a one-to-many relation among
some elements, one element has some effects on a set
of elements.

. Ordering (O) some kind of ordering among a set of
elements can be highlighted.

. Hierarchy (H) different levels of importance can be
defined among a set of elements.

6 FROM SYSTEM TASK MODELS TO ABSTRACT

USER INTERFACES

6.1 Identification of the Presentation Task Sets

The Presentation Task Sets (PTSs) are sets derived from a
CTT task model and represent tasks that are enabled over

the same period of time. In particular, the PTSs are derived
by analyzing the formal semantics of the CTT temporal
operators: For example, if two tasks are executed concur-
rently, they are enabled at the same time, so they belong to
the same set. Alternatively, if two tasks are connected
through an enabling operator, the second task will be
executed just after the first one, so the tasks do not belong to
the same Presentation Task Set. Fig. 5 shows an example of
a set of PTSs associated with an excerpt of task model
concerning a museum application. Depth-first visiting the
task tree, the first leaf subtask (Select access ticket booking) is
followed by an enabling operator (>>). This means that no
other task is enabled together with it, so there is one
presentation task set composed of only such task. Then,
there is an application task (ShowsTicketBooking) which is
connected with a disabling operator (½>) with a group of
tasks concurrently executed (see the interleaving operator
“jjj” between Enter name, Enter surname, Enter Day Of Visit,
Enter CreditCard Number, SelectUseOfGuide): Such concur-
rency implies that they are enabled over the same period of
time and, only after performing all of them, the next tasks
are enabled. Therefore, a distinct presentation task set is
associated with them. After the users have entered their
personal data, they will be able either to Cancel or Submit the
request (note the choice operator []). Since the user should
be able to choose between one of them, such tasks are
enabled over the same period of time and belong to the
same set.

The task model shown in Fig. 5 describes the activities
involved in reserving a ticket under the assumption that a

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

Fig. 5. Example of calculation of Presentation Task Sets.

specific platform—the desktop in this case—is used. If
another platform is considered, the specification of the same
activity might change quite radically, e.g., due to a different
organisation of the expected interactive session (for in-
stance, entering surname and credit card number, etc.,
might be executed sequentially). Hence, another task model
is specified accordingly, which in turn leads to a modified
arrangement of PTSs.

If a nomadic task model is considered, then the same
type of representation is provided. The main difference is
that in this case it includes tasks that can be performed
through different platforms and also indicates the relations
among such tasks.

Automatic calculation of the presentation task sets
implies defining the conditions that allow passing from
one PTS to another, which depends on the temporal
operators among the various tasks. Such conditions can be
presented in various manners. One example is when one
task alone allows for enabling the next set of tasks (the
simplest example is when one task is connected through an
enabling operator with other tasks). So, in this case, the
condition coincides with the task itself. However, there are
other cases in which such a condition reveals to be a
Boolean expression involving two or more tasks. It happens
when there is a group of tasks which are performed
concurrently and this group is connected with an enabling
operator to another set. In this case, whatever the execution
order of those tasks, the condition for moving on to the next
set of tasks is the completion of all the concurrent tasks. As
a result, the Boolean condition expressing such a constraint
is an AND operator applied to all the tasks involved. In
other cases, the OR Boolean operator is necessary to express
the fact that the performance of just one task in the set
enables the next presentation. Moreover, also complex
expressions with combinations of AND/OR operators can
occur.

6.1.1 Heuristics for Obtaining Presentation Task Sets

and Transitions

As the number of presentation task sets generated auto-
matically from the task model is of the same order as the
number of the CTT enabling operators appearing in the task
model, a direct mapping between them and the user
interface presentations might produce excessively modal
user interfaces or a high number of presentations with a
very limited number of elements. A number of heuristics
have been identified for the purpose of helping designers to
limit the number of presentations by merging two or more
PTSs. The reasons for this step are to reduce the initial
number of PTSs, which as previously noted can be very
high in some cases and include significant information
(such as data exchange is) within the same presentation,
even when the tasks involved belong to different PTSs, so
that users can better follow the flow of information. These
rules are particularly useful when desktop systems are
considered. Up to now, the heuristics that have been
identified are the following:

. If two (or more) PTSs differ for only one element and
those elements are at the same level connected with
an enabling operator, they can be joined together.

. If a PTS is composed of just one element, it can be
included within another superset containing its
element.

. If some PTSs share most elements, they can be
unified in order not to duplicate information which
is already available in another presentation in almost
all parts. For example, if the common elements all
appear at the right of the disabling operator, they
can be joined into the same PTS.

. If there is an exchange of information between two
tasks, they can be put in the same PTS in order to
highlight such data transfer.

It is worth noting that the designer can decide about the

heuristics’ application, also taking into account the features

of the specific platform considered. For example, if we

consider graphical user interfaces, it is likely that, on

devices with small screens, the heuristics will be less

applied than on other devices with more extended

capabilities. The reason is that desktop systems rely on

large screen areas, whereas on small displays too many user

interface objects in the same presentation would tend to add

clutter rather than increase usability.

6.2 Mapping Tasks to Interactors

Once we have obtained the information about tasks

belonging to each presentation task set together with the

transitions among the various sets, the next step is obtaining

the description of the abstract user interface, structured into

presentations and connections among such presentations.

Each presentation is identified by one Presentation Task Set

and has the goal to support the associated tasks. Each

presentation is defined in terms of interactors and opera-

tors. In order to do this, two steps are necessary:

. mapping the various tasks into corresponding
interaction objects of the abstract user interface;

. deriving the appropriate composition operators that
should be applied to the various interactors.

In the following two sections, further details will be
provided about such steps.

6.2.1 Transforming Tasks into Abstract Interaction

Objects

In order to map the various tasks into the related

interactors, we have to consider the information contained

in the task model. First of all, the allocation of a task

(whether the task is performed either through an interaction

between the system and the user, or just by the application)

is useful information to identify the category of the

associated interactor (respectively, Interaction or OnlyOut-

put). Each of these categories represents a set of interactors

identified by the type of the task supported. For example,

an “edit” task type indicates that the corresponding

interactor should allow information modification, as well

as a “selection” task type indicates that the associated

interaction techniques should support the performance of

this kind of activity.
Actually, these interactors are generic classes of inter-

actors, which means that it is still possible to identify more

MORI ET AL.: DESIGN AND DEVELOPMENT OF MULTIDEVICE USER INTERFACES THROUGH MULTIPLE LOGICAL DESCRIPTIONS 9

specialized subclasses up to reaching elementary interac-
tors. The last step for deciding the type of interactor
analyses the semantic effects of the interactions to support.
In some cases, the combined analysis of task type and class
of task objects manipulated will allow the identification of
the specific, elementary interactor that is finally selected for
the mapping. In other cases, different conditions might
need to be specified because particular task types require
the specification of further attributes. For instance, as far as
selection tasks are concerned, besides specifying the type of
selection supported (single or multiple), in order to identify
the appropriate type of interactor, we must also define the
cardinality (high/medium/low) of the object set from
which the selection will be made. The same type of rule is
applied in the case of application tasks. “Feedback” and
“Visualise” are examples of task types belonging to the
application task category: They indicate the activity of
presenting some results of a server-side application proces-
sing or some application data, so they will be mapped onto
only_output interactors. Also, in this case, there are
different interactors suitable to support these activities.

Fig. 6 shows the interface for handling the abstract user
interface automatically generated by the tool from the
corresponding task model. On the left side, there is the list
of presentations that have been generated automatically.
One of them has been selected (Reservation) and the tool
displays the elements composing it and its logical structure
on the right. This presentation corresponds to the PTS 2 in
Fig. 5. There is an ordering of five elements and then a
grouping of one element with the first ordering. For each
composition operator, there is the list of the associated
interactors with the indication of their types. When one
interactor or composition operator is selected in the upper
part of the window, then the associated concrete elements
are shown in the bottom part. In the figure, a single
selection element is selected and the lower part shows the
associated label and how it is currently implemented. The

designers can modify it if they are not satisfied. The tool

maintains links among elements at different abstraction

levels, so that, if at some point there is a need to modify the

upper level, it is easy to identify the part of the upper level

corresponding to the elements under consideration. Fig. 6

shows how it is possible to select one interactor and have

the tool automatically highlight the corresponding task in

the task model with a bold border around its icon (the

SelectUseofGuide task in the example).

6.2.2 Identification of the Interactor Composition

Operators

The interactor composition operators that appear in the

abstract user interface are derived by analyzing the CTT

task model specification. In particular, not only are the CTT

operators analysed, but also other attributes of the tasks

(such as frequency) take part in this transformation.
In fact, on the one hand, when some conditions occur,

several CTT operators are directly linked with operators of

the abstract user interface. This is the case when two or

more tasks sequentially performed end up in the same

presentation task set: The sequencing at the task level can be

translated, at the abstract user interface level, by applying

the ordering operator.
On the other hand, other operators of the abstract user

interface take into account the attributes of the involved

tasks, rather than the CTT temporal operators existing

among them. For example, in the case of the Hierarchy

operator, the application rule strongly depends on the

frequency values of the tasks involved. A high level of task

frequency is an indication that a task is recurrently

performed, so it has greater “importance” with respect to

other tasks that are less frequently performed: The

hierarchy operator is appropriate for conveying this kind

of information.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

Fig. 6. The interface for managing the Abstract User Interface generated from the task model.

6.2.3 The Definition of the Links with the

Functional Core

One issue is how to connect the interactive part of a
software application with the functional core, the set of
application functionalities independent of the media and
the interaction techniques used to interact with the user.
Since in the task model the activities supposed to be
performed by the system are identified by the application
tasks, the tool automatically identifies in the task model the
two situations that are relevant for such a link:

. when (the system tasks associated with) internal
functionalities are supposed to perform information
access to the back-end;

. when an internal functionality needs to present
information to the user.

In order to manage these two cases, in each task,
specification the objects handled to perform the tasks are
indicated, classified in perceivable and application objects:
The first objects have a direct impact on the user interface
inasmuch as they are associated with concrete interface
elements appearing on the user interface (menus, buttons,
images, labels, etc.), whereas the “application” objects
refer to logical objects connected with the application
underneath.

In the first situation, no perceivable activity on the user
interface side occurs, so it is possible to automatically
identify the related tasks because they are system tasks
characterised by a lack of perceivable objects in their
specification. The interactors involved in such functionality
are those handling the application objects whose values
should be used to send a request to the functional core. In
the abstract interactor, there is information indicating what
functionality of the core should be accessed (identified
through the corresponding application task) and other
attributes indicating the parameters associated to such a
request. This information is further refined when moving to
the concrete interface level.

Also, the second case (when an internal functionality
needs to present information to the user) can be auto-
matically detected because, in this situation, we have
application tasks manipulating both perceivable and appli-
cation objects. This means that the application functionality
that has to present information to the user must commu-
nicate with the interactor handling the perceivable object
associated with the task.

7 FROM THE ABSTRACT USER INTERFACE TO ITS
IMPLEMENTATION

As mentioned in Section 5.1, one of the main goals in
designing TERESA was to provide a flexible environment
for designers following a mixed initiative paradigm. The
environment supports designers according to various
possible requests of use: There are cases when the designer
wants to have as much automatic support as possible and,
in other cases, they may want to change some general
design assumptions; yet, in others, they want to have full
control in order to modify all the possible details in the
design process. At the beginning, a number of general

parameters and information are presented: As you can see
in Fig. 6, in the left part, the designer has a global picture of
the current state of the design in terms of abstract
presentations currently generated, general user interface
parameters, composition operators settings, etc., together
with the possibility of further selecting one of these options
and visualizing/modifying the related attributes in the
right-hand panel window. An example of the levels of
control available in TERESA for designers is the possibility
of selecting the specific communication technique to be
used for implementing each interactor composition opera-
tor. The tool can provide suggestions according to pre-
defined design criteria, but developers can modify them:
For example, they can decide to implement the grouping
operator by means of a fieldset, the hierarchy operator
through different font sizes, the ordering by means of an
ordered list, and the relation operator by means of a form.

In addition, depending on the type of platform
considered there are different ways to implement design
choices at the user interface level. For example, the same
grouping operator can be implemented with different
techniques depending on whether the desktop or the
mobile or the vocal platform is considered. In fact, the
desktop environment allows using tables, so the grouping
operator can be implemented by a number of techniques
including both unordered lists by row and unordered list
by column (apart from classical grouping techniques like
fieldsets, bullets, and colors). The small capability of a
mobile phone does not allow implementing the grouping
operator by using an unordered list by column then this
technique is not available on this platform. In a vocal
device, grouping can be achieved through inserting
specific sounds or pauses or using a specific volume or
keywords [4].

Other differences regarding the environments related to
each platform can be found for the hierarchy operator: In
the desktop environment, the hierarchy operator can be
effectively implemented by varying the space allotted to the
different objects in the presentation (for graphical user
interfaces) or varying the size of text if a textual interaction
object is considered. Neither of them can be used in the
mobile environment, respectively, because, in the first case,
the small area of cellphones’ displays does not allow
considering this dimension and, in the second case, the
limited capability of this platform does not allow the
designer to vary the dimension of the text too much without
compromising the quality of the result. In the vocal
platform, different levels of importance can be expressed
by increasing or decreasing the volume.

In addition, other differences can be found to support the
user interface design between platforms, for example, in the
global parameters that are available to designers for
customizing the user interface: In the desktop system,
parameters such as the background picture, the color of the
text, etc. are available, whereas, in vocal devices, they can
be used to define welcome messages, use of barge-in
options, synthesis, and recognition properties.

In the prototyping phase, the designer can select any
presentation and change either how to implement a
composition operator in it or a specific interaction object

MORI ET AL.: DESIGN AND DEVELOPMENT OF MULTIDEVICE USER INTERFACES THROUGH MULTIPLE LOGICAL DESCRIPTIONS 11

or some of its attributes. It is worth pointing out that the
tool enables saving the current configuration settings for
future uses and modifications, so that the designers can
incrementally build the user interface.

As we mentioned before, the tool also supports varia-
bility within an interaction platform. For example, there are
many types of devices that belong to the mobile phone
platform. They can vary in terms of screen size, number and
location of softkeys, color support, etc. Thus, the tool
supports the possibility of indicating the main character-
istics of the device considered within the selected platform
(such as number of characters per line or number of lines
supported by the display). This further information is
considered in the final generation of the user interface, for
example, to decide whether to use field sets or images.

In Table 1 and Table 2, we show some examples of user
interfaces derived by applying the described method to a
museum application.

More specifically, in Table 1 the presentations refer to a
situation in which the user has selected information about a
specific artwork of Modern Sculpture section. As observed,
there are some differences concerning the presentation of

the artwork selected: On the desktop system, the picture of
the artwork is shown, together with additional information
(title, description, artist, material, etc.). On the cellphone,
the picture is provided as well but the textual information is
more concise; in a VoiceXML-enabled system, a vocal
description of the artwork is provided. It is worth pointing
out that, on the different platforms, the navigation mechan-
isms also change: On both the desktop system and
cellphone, some links have been (visually) presented,
although they differ in number. In fact, on the desktop
system, there is enough room for displaying also links to
other sections of the museum, whereas, on the cellphone,
the choice is more limited. In the third case (VoiceXML), the
navigation is implemented by dialogs that have been
vocally provided.

Another interesting point is represented by the different
implementations of the abstract user interface operators on
the various platforms. In Table 2, the different implementa-
tions of the grouping composition operator on the various
platforms have been shown: In the first two presentations, a
set of graphical buttons (first case) or textual links (second
case), all arranged vertically, is used, whereas, in the vocal

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

TABLE 1
Presentations of Artwork Information on Different Platforms

TABLE 2
Implementation of the Grouping Operator on Different Platforms

interface (third case), there are sounds that delimit the
grouped elements.

8 EXPERIENCES OF USE AND LESSONS LEARNED

The tool has been used in a number of cases for various
purposes in different settings. In a HCI course at a computer
science department after a two-hour lesson on task model-
ling, students were introduced to the tool for developing and
analyzing task models for another couple of hours. Next,
they attended a lesson on model-based design and, after that,
they were able to use the TERESA tool for the development
of a small application running on a platform chosen by them.
Each student developed the user interface for only one
platform because the time available was limited but different
students selected different platforms. So, at the end, it was
possible to obtain a multiplatform application. This suggests
that the environment requires limited effort to learn it and
even people with low experience were able to generate user
interfaces according to usability criteria thanks to the tool
support. A more formal evaluation was conducted at the
Motorola Italy software development centre [8]. The first
experiment consisted in starting with a given task model and
obtaining the corresponding user interface for both desktop
and mobile phone. The exercise goal was to realize a simple
version of an e-desk application accessible through desktop
and mobile systems. A second experiment was conducted in
order to collect more information about satisfaction and
cost/effectiveness of the approach. The experiment con-
sisted in developing a prototype version of an e-Agenda
application running on both desktop and mobile phone and
including the following functionalities: visualization of the
appointments of a single day, visualization of the details of
each appointment, possibility of inserting/modifying/delet-
ing an appointment. The evaluators were required to collect
quantitative metrics related to development efficiency, such
as the total effort needed to complete the exercise expressed
in terms of time required for the first version and the final
version, and categorized by process phase, as well as the
number of errors introduced. Results showed similar total
times for the traditional and TERESA approaches, with
different distributions over the development phases and
between time required by the first and the final version. The
TERESA-supported method offered a good support to fast
prototyping, producing a first version of the interface in a
significantly shorter time. On the other side, the time
required to modify it resulted in an increase. The use of the
tool almost doubled required time at redesign stage, while,
at the development stage, the results showed dramatically
improved prototyping performance, reducing needed time
to half. This leaves a margin for further improvement since
the design time required by TERESA approach is expected to
decrease as the subjects become more familiar with model-
based techniques and notations.

Moreover, the reported slight total time increase of using
TERESA with respect to using traditional approaches (on
average, it was half an hour) is acceptable since it involves a
trade off with design overall quality: Many subjects
appreciated the benefits of a formal process supporting
the individuation of the most suitable interaction techni-
ques. For example, designers reported satisfaction about

how the tool supported the realization of a coherent page
layout and identification of links between pages. The
evaluators noticed and appreciated the improved structure
of the presentations and a more consistent look of the pages
resulting from the model-based approach. This is also
coupled with an increased consistence between the desktop
and the mobile version, pointed out by almost all the
evaluators.

In summary, TERESA emerged from the evaluation as an
appealing solution for designing and developing user
interfaces on multiple and heterogeneous devices.

9 CONCLUSIONS

We have presented a method and the associated tool
supporting design and development of nomadic applica-
tions. While we think that designers should be aware of
the potential platforms (not devices) early on in the design
process, so they can identify the tasks suitable for each,
the method allows developers to avoid dealing with a
plethora of low-level details because the last transforma-
tion (from concrete to implementation) is automatic. In
addition, the same languages are used to describe tasks
and abstract interfaces for all platforms; only the language
for describing concrete user interfaces is to some extent
platform-dependent.

Some usability criteria are incorporated into the tool
transformations from task to user interface. This means that
the tool is able to provide suggestions for selecting the most
appropriate interaction techniques and ways to compose
them. Such transformations guarantee a consistent design
because the same design criteria are applied in similar
situations. In addition, most of the functionality of the CTTE
task modeling tool has now been integrated into TERESA so
that designers can use just one tool and not lose time
switching between two different tools. TERESA is publicly
available at http://goive.isti.cnr.it/teresa.html.

The logical descriptions and the transformations defined
in the method presented can also be used at runtime to
support migratory interfaces (interfaces able to dynamically
move from one device to another) [3]. The tool has provided
a good opportunity to clarify various issues associated with
the linkage between different models and the associated
transformations, which must be fully understood in order
to achieve real solutions and for which previous work in the
area provided rather vague solutions. While the current
TERESA version supports the design and development of
graphical and vocal interfaces for various platforms
(currently through the generation of XHTML, XHTML
Mobile Profile, and VoiceXML, though other languages are
planned), further work will be dedicated to supporting a
broader set of modalities and their combinations.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the
European Commission through the CAMELEON IST
project (http://goive.isti.cnr.it/cameleon.html). They also
thank Silvia Berti and Francesco Correani for the help in the
implementation of the abstract-to-final interface transfor-
mation and the Motorola Italy Software Development
Centre for useful feedback in the TERESA evaluation.

MORI ET AL.: DESIGN AND DEVELOPMENT OF MULTIDEVICE USER INTERFACES THROUGH MULTIPLE LOGICAL DESCRIPTIONS 13

REFERENCES

[1] M. Abrams, C. Phanouriou, A. Batongbacal, S. Williams, and J.
Shuster, “UIML: An Appliance-Independent XML User Interface
Language,”Proc. EighthWWWConf., 1999, http://www.harmonia.
com/resources/papers/www8_0599/index. htm.

[2] F. Alı̀, M. Perez-Qinones, and M. Abrams, “Building MultiPlat-
form User Interfaces with UIML,” Multiple User Interfaces, A.
Seffah and H. Javahery, eds., pp. 95-118, 2003.

[3] R. Bandelloni and F. Paternò, “Flexible Interface Migration,” Proc.
Intelligent User Interfaces (IUI ’04), pp. 148-157, 2004.

[4] S. Berti and F. Paternò, “Model-Based Design of Speech
Interfaces,” Proc. Design, Specification, and Verification of Interactive
Systems Workshop, pp. 231-244, 2003.

[5] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language
Reference Manual. Addison Wesley, 1999.

[6] L. Bouillon and J. Vanderdonckt, “Retargeting Web Pages to other
Computing Platforms,” Proc. IEEE Ninth Working Conf. Reverse
Eng. (WCRE ’02), pp. 339-348, 2002.

[7] G. Calvary, J. Coutaz, and D. Thevenin, “A Unifying Reference
Framework for the Development of Plastic User Interfaces,” Proc.
Eng. Human-Computer Interaction Conf., pp. 173-192, 2001.

[8] C. Chesta, M. Fliri, S. Martini, B. Russillo, and C. Barbero, “First
Evaluation of Tools and Methods,” CAMELEON Project Docu-
ment: D3.4, July 2003.

[9] J. De Sousa and D. Garlan, ”Aura: An Architectural Framework
for User Mobility in Ubiquitous Computing Environments,” Proc.
IEEE-IFIP Conf. Software Architecture, 2002.

[10] J. Einsenstein, J. Vanderdonckt, and A. Puerta, “Applying Model-
Based Techniques to the Development of UIs for Mobile
Computers,” Proc. Conf. Intelligent User Interfaces, pp. 69-76, 2001.

[11] IBM WebSphere Transcoding Publisher, http://www.ibm.com/
software/webservers/transcoding/, 2003.

[12] G. Menkhaus and S. Fischmeister, “Evaluation of User Interface
Transcoding Systems,” Proc. Seventh World Multiconf. Systemics,
Cybernetics and Informatics, 2003.

[13] G. Mori, F. Paternò, and C. Santoro, “CTTE: Support for Developing
and Analysing Task Models for Interactive System Design,” IEEE
Trans. Software Eng., vol. 28, no. 8, pp. 797-813, Aug. 2002.

[14] G. Mori, F. Paternò, and C. Santoro, “Tool Support for Designing
Nomadic Applications,” Proc. Conf. Intelligent User Interfaces
(IUI ’03), 2003.

[15] K. Mullet and D. Sano, Designing Visual Interfaces. Prentice Hall,
1995.

[16] B. Myers, S. Hudson, and R. Pausch, “Past, Present, Future of User
Interface Tools,” ACM Trans. Computer-Human Interaction, vol. 7,
no. 1, pp. 3-28, Mar. 2000.

[17] J. Nichols, B.A. Myers, M. Higgins, J. Hughes, T.K. Harris, R.
Rosenfeld, and M. Pignol, “Generating Remote Control Interfaces
for Complex Appliances,” Proc. ACM Symp. User Interface Software
and Technology, pp. 161-170, 2002.

[18] D. Olsen, S. Nielsen, and D. Parslow, “Join and Capture: a Model
for Nomadic Interaction,” Proc. ACM Symp. User Interface Software
and Technology, pp. 131-140, 2001.

[19] L. Paganelli and F. Paternò, “A Tool for Creating Design Models
from Web Site Code,” Int’l J. Software Eng. and Knowledge Eng.,
vol. 13, no. 2, pp. 169-189, 2003.

[20] F. Paternò, Model-Based Design and Evaluation of Interactive
Application. Springer Verlag, 1999.

[21] F. Paternò and A. Leonardi, “A Semantics-Based Approach to the
Design and Implementation of Interaction Objects,” Computer
Graphics Forum, vol. 13, no. 3, pp. 195-204, 1994.

[22] F. Paternò and C. Santoro, “One Model, Many Interfaces,” Proc.
Fourth Int’l Conf. Computer-Aided Design of User Interfaces, pp. 143-
154, 2002.

[23] S. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T. Winograd,
“ICrafter: A Service Framework for Ubiquitous Computing
Environments,” Proc. Int’l Symp. Ubiquitous Computing, pp. 56-75,
2001.

[24] A. Puerta and J. Eisenstein, “Towards a General Computational
Framework for Model-Based Interface Development Systems,”
Proc. ACM Conf. Intelligent User Interfaces, pp. 171-178, 1999.

[25] A. Puerta and J. Eisenstein, “XIML: A Common Representation for
Interaction Data,” Proc. ACM Conf. Intelligent User Interfaces
(IUI ’02), pp. 214-215, 2002.

[26] C. Rich and C. Sidner, “COLLAGEN: A Collaboration Manager
for Software Interface Agents,” User Modeling and User-Adapted
Interaction, vol. 8, nos. 3/4, pp. 315-350, 1998.

[27] P. Szekely, P. Sukaviria, O. Castells, J. Muthukumarasamy, and E.
Salcher, “Declarative Interface Models for User Interface Construc-
tion Tools: The MASTERMIND Approach,” Eng. for Human-
Computer Interaction, L.J. Bass and C. Unger, eds., pp. 120-150, 1995.

[28] XForms-The Next Generation of Web Forms, http://www.
w3.org/MarkUp/Forms/, 2003.

Giulio Mori received a degree in informatics
engineering from university of Pisa and is
research assistant at the Human Interfaces in
Information Systems Research Laboratory of
ISTI-CNR, working on design and development
of interactive applications.

Fabio Paternò is senior researcher at ISTI-
CNR, where he leads the Human Interfaces in
Information Systems Research Laboratory. He
has been the coordinator of a number of
European and other types of projects on user
interface software-related topics. He is a mem-
ber of the IFIP TC13 technical committee. He
was the president of ACM-SIGCHI, Italy, from
2000 to 2004. He has been member of the
program committees of the main international

HCI conferences. He has published more than 120 papers in refereed
international conferences or journals. His main interests are in methods
and tools for design and evaluation of usable interactive software
systems accessible through many types of contexts.

Carmen Santoro received a degree in computer
science from the University of Pisa and since
1997 she has been working as a researcher in
the Human Interfaces in Information Systems
Laboratory of ISTI-CNR. She has published
papers in international conferences and journals.
She has been member of the program commit-
tee of international conferences like Mobile HCI
2002, INTERACT 2003, and HESSD 2004, and
reviewer for international HCI conferences,

journals, and books. She was the workshop and tutorial chair of Mobile
HCI 2002. Her current research interests include methods and tools for
multimodal and multiplatform user interface design and evaluation.

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

